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Abstract
Background: For the recruitment and monitoring of subjects for therapy studies, it is important to predict whether
mild cognitive impaired (MCI) subjects will prospectively develop Alzheimer’s disease (AD). Machine learning (ML) is
suitable to improve early AD prediction. The etiology of AD is heterogeneous, which leads to high variability in disease
patterns. Further variability originates from multicentric study designs, varying acquisition protocols, and errors in the
preprocessing of magnetic resonance imaging (MRI) scans. The high variability makes the differentiation between
signal and noise difficult and may lead to overfitting. This article examines whether an automatic and fair data
valuation method based on Shapley values can identify the most informative subjects to improve ML classification.

Methods: An ML workflow was developed and trained for a subset of the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) cohort. The validation was executed for an independent ADNI test set and for the Australian Imaging,
Biomarker and Lifestyle Flagship Study of Ageing (AIBL) cohort. The workflow included volumetric MRI feature
extraction, feature selection, sample selection using Data Shapley, random forest (RF), and eXtreme Gradient Boosting
(XGBoost) for model training as well as Kernel SHapley Additive exPlanations (SHAP) values for model interpretation.

Results: The RF models, which excluded 134 of the 467 training subjects based on their RF Data Shapley values,
outperformed the base models that reached a mean accuracy of 62.64% by 5.76% (3.61 percentage points) for the
independent ADNI test set. The XGBoost base models reached a mean accuracy of 60.00% for the AIBL data set. The
exclusion of those 133 subjects with the smallest RF Data Shapley values could improve the classification accuracy by
2.98% (1.79 percentage points). The cutoff values were calculated using an independent validation set.

Conclusion: The Data Shapley method was able to improve the mean accuracies for the test sets. The most
informative subjects were associated with the number of ApolipoproteinEε4 (ApoEε4) alleles, cognitive test results,
and volumetric MRI measurements.
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Background
Alzheimer’s disease (AD) is a neurodegenerative disease
[1] and the most frequent cause of dementia [2]. In 2018,
there were approximately 50 million patients [2] with
dementia worldwide. This number is expected, to increase
up to 152 million by 2050 [2]. Two thirds of those patients
suffer from AD [2]. At the moment, there is no causal
therapy to cure AD [3].
The early identification of patients at risk to develop

AD, and the development of preclinical markers, is impor-
tant to recruit subjects for therapy studies that aim to stop
the progression among the AD continuum [4]. On this
continuum, individuals that develop cognitive impairment
not inferring with everyday activities are considered as
having mild cognitive impairment (MCI) due to AD. Sub-
jects with MCI have a higher risk to develop AD [5] than
cognitively healthy individuals. However, not all individu-
als with evidence of AD brain changes will prospectively
develop symptoms of MCI or dementia. Thus, the differ-
entiation between progressive MCI (pMCI) subjects who
will prospectively develop AD and subjects with a stable
course of MCI (sMCI) is important [6].
Machine learning (ML) was successfully applied to AD

detection in various studies [7–9]. However, AD is a het-
erogeneous disease [10, 11], which leads to diverse disease
patterns inML data sets. Multicentric study designs, vary-
ing magnetic resonance imaging (MRI) acquisition proto-
cols, and inaccuracies in MRI processing increase the data
variability. The variability in MRI processing is, for exam-
ple, caused by MRI segmentation errors [12]. Due to the
high data variability, it is often hard for ML methods to
distinguish between disease variability and noise, which
increases the risk of overfitting [13]. An overfitted ML
model achieves good classification results for the train-
ing set but worse results for independent test data [13].
Overfitted models thus do not focus on the most relevant
distinction criteria but were potentially confused by noisy
data. The motivation of this research is, to prevent the
overfitting ofMLmodels and thus increase generalization.
One idea to overcome this problem is to focus the training
data set on highly representative subjects. It is expected
that this focus will decrease the accuracies for the training
set but will increase them for independent test sets [14].
Respectively, the model becomes more generalizable and
less susceptible to noise.
The identification of the subjects with the most infor-

mative data was implemented using Data Shapley [15].
This method valuated the quality of a subject by its con-
tribution to ML models.

Related work
Outlier detection [16] is a common strategy inML prepro-
cessing, improving the classification results and robust-
ness of ML models [17]. However, there are multiple def-

initions of outliers in this context. Classical outlier detec-
tion methods [16], like isolation forest [18], density-based
spatial clustering of applications with noise (DBSCAN)
[19], local outlier factor (LOF) [20], generative adversar-
ial network (GAN)-based [21] outlier detection [22], and
self-supervised outlier detection (SSD) [23], define sam-
ples strongly different from the remaining data set as
outliers [24]. An unsupervised fuzzy c-means cluster-
ing to identify outlier subjects during AD detection was
proposed in Duraisamy et al. [25]. Based on the reduced
data set, a weighted probabilistic neural network [26] was
trained. The data set included texture and shape MRI
features extracted from the hippocampus and posterior
cingulate cortex. The approach was validated for 509 sub-
jects (137 AD, 210 MCI, 162 cognitive normals (CN)) of
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
[27], and 74 subjects (21 CN, 37 MCI, 16 AD) from the
Bordeaux-3-city data set [28]. The results showed accu-
racies of 98.63% (CN vs. AD), 95.4% (CN vs. MCI), and
96.4% (MCI vs. AD) for the ADNI data set. The exclusion
of outlier subjects improved the classification results.
For the detection of both subjects with noisy data and

less important features, a semi-supervised linear discrimi-
nant analysis was developed in Adeli-Mosabbeb et al. [29].
The algorithm was evaluated for two synthetic data sets
and two real-world data sets for the detection of Parkin-
son’s disease and AD. For AD detection, 93 AD, 202 MCI,
and 101 CN ADNI subjects were included. The grey mat-
ter (GM) volumes of predefined MRI regions of interest
(ROIs) and the mean intensities of fluorodeoxyglucose
(FDG) positron emission tomography (PET) scans were
used as features. The results outperformed comparable
models by reaching accuracies of 91.8% (CN vs. AD) and
89.8% (CN vs. MCI).
A framework that enables both feature and sample

selection based on a hierarchical approach was introduced
in An et al. [30]. The approach was validated for a sub-
set containing 737 ADNI-1 subjects (204 CN, 205 sMCI,
157 pMCI, 171 AD). GM volumes extracted from the
MRI scans and single-nucleotide polymorphisms (SNPs)
were used as features for the experiments. A linear sup-
port vector machine (SVM) [31] accomplished the final
classification. The cross-validation results outperformed
multiple feature selection methods by reaching accuracies
of 92.4% (CN vs. AD), 80.1% (CN vs. MCI), and 80.8%
(sMCI vs. pMCI).
Confident learning [32] is related to outlier detection

but with a different definition of outliers. The main idea
in confident learning is to automatically identify sam-
ples with incorrect or noisy labels in ML data sets. A
model-agnostic confident learning approach, estimating
the joint distribution between noisy and corrected labels,
was implemented in Northcutt et al. [32]. The identi-
fication of noisy labels depends on the out-of-sample
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predicted probabilities of ML models. The exclusion of
images with noisy labels from the ImageNet [33] data
set using a ResNet18 [34] convolutional neural network
(CNN) [35] led to improved results.
Another definition of outliers called Instances that

Should be Misclassified (ISM) was introduced in Smith
and Martinez [14]. This paper also provided an outlier
detection method called PReprocessing Instances that
Should beMisclassified (PRISM). Samples that do not lead
to improved ML models but overfitting are identified as
ISMs. The experiments also showed improved results for
53 classification data sets selected from the University of
California, Irvine (UCI) ML repository (https://archive.
ics.uci.edu/ml/index.php, Accessed: 18 May 2021), train-
ing nine ML models based on the reduced data sets.
A similar approach, called Data Shapley, was introduced

in Ghorbani et al. [15]. This approach valuates data sam-
ples based on Shapley values [36]. Shapley values are
affiliated with coalition game theory. The aim is to fairly
calculate the coalition of each data sample to the collabo-
rative classification result. The fairness of Shapley values
is achieved by considering the coalition in each subset of
samples.
The idea of Data Shapley is to fairly valuate the sam-

ples in a data set based on their contribution to the
overall model performance. This approach was success-
fully applied for pneumonia detection in Tang et al. [37]
for the chest X-ray [38] data set, resulting in improved
classification results.
This article transferred the method described in Tang

et al. [37] to early AD detection. The aim of this work is
to prevent overfitting in heterogeneous AD data sets and
thus train more robust ML models. Additionally, subjects
that were classified as being less representative were iden-
tified and examined. In this context, Shapley values were
also used to explain black-box models similar to previous
work [39].

Material andmethods
This section describes the material and methods of the
ML workflow visualized in Fig. 1. The ML workflow was
implemented using the programming language Python
version 3.6.9 [40]. The “Hyperparameters of implemen-
tation” section summarizes the parameters of the imple-
mentation. First, data sets and subject preselection were
defined. Afterwards, volumetric features were extracted
fromMRI scans. ADNI data were split on the subject level
into 65% training, 15% validation, and 20% test sets. Data
valuation using Data Shapley was executed to identify
those subjects with the most informative data. Leave-one-
out (LOO) [41] data valuation was executed as a compari-
son method. On the training set, random forest (RF) [42],
and eXtreme Gradient Boosting (XGBoost) [43] models,
were trained. Finally, Kernel SHapley Additive exPlana-

tions (SHAP) values [44] were calculated to interpret the
models.

Data sets
In this article, data from two AD cohorts were included.
The models were trained and validated using data from
the ADNI [27] cohort. External validation was performed
using data from the Australian Imaging, Biomarker and
Lifestyle Flagship Study of Ageing (AIBL) [45].
ADNI (https://adni.loni.usc.edu, Accessed: 18 May

2021) was launched in 2003 as a public-private partner-
ship. The primary goal of ADNI is to test whether a combi-
nation of biomarkers can measure the progression of MCI
and AD. Those biomarkers include serial MRI, PET, and
biological markers, as well as clinical and neuropsycho-
logical assessments. The ADNI cohort recruited subjects
from more than 60 sites in the USA and Canada and
consists of four phases (ADNI-1, ADNI-2, ADNIGO, and
ADNI-3). The subjects were assigned to three diagnostic
groups. CNs have no problems with memory loss. Sub-
jects with AD meet the criteria for probable AD defined
by the National Institute of Neurological and Commu-
nicative Disorders and Stroke–Alzheimer’s Disease and
Related Disorders Association (NINCDS-ADRDA) [46].
The diagnostic criteria of ADNI were explained in more
detail in Petersen et al. [27]. The data set was downloaded
on 27 Jul 2020 and included 2250 subjects.
AIBL (https://aibl.csiro.au/, Accessed: 18 May 2021) is

the largest AD study in Australia and was launched in
2006. AIBL aims to discover biomarkers, cognitive test
results, and lifestyle factors associated with AD. As AIBL
focuses on early AD stages, most of the subjects are CN.
The MCI subjects of AIBL met the criteria described
in Winblad et al. [47], whereas AD diagnoses follow
the NINCDS-ADRDA criteria [46] for probable AD. The
diagnostic criteria of AIBL were described in Ellis et al.
[45]. Approximately half of the CN subjects recruited in
AIBL show memory complaints [45]. AIBL data version
3.3.0 was downloaded on 19 Sep 2019 and included 826
subjects.
The proposed workflow aims to predict whether sub-

jects with a baseline (BL) diagnosis of MCI will prospec-
tively convert to AD. The data set was not limited to a
conversion period to include as many subjects from the
original data set as possible. This selection makes the
data set more diverse. The sMCI group included sub-
jects with MCI as BL diagnosis and no diagnostic changes
in all subsequent visits. Subjects with no follow-up diag-
nosis, and subjects with a reversion to CN at any visit,
were excluded. The pMCI diagnostic group includedMCI
subjects, which converted to a stable diagnosis of AD.
Thus, pMCI subjects, which reverted to CN or MCI, were
excluded. Those exclusion criteria, and the number of
subjects excluded from the ADNI data set by each crite-

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://adni.loni.usc.edu
https://aibl.csiro.au/
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Fig. 1 Implemented ML workflow. The experiments were based on data from ADNI and AIBL. Volumetric features were extracted for one BL MRI
scan per subject. The ADNI data set was randomly split into a 65% training, 15% validation, and 20% test set. RF feature selection was implemented
to extract the most important MRI features for the training set. Those MRI features were concatenated with demographic features and cognitive test
scores. Data valuation with Data Shapley values was implemented to detect the subjects with the most informative data. Black-box RF and XGBoost
models were trained and validated. Shapley values were calculated for black-box model interpretation

rion, are visualized in Fig. 2. The ADNI data set ini-
tially included 2250 subjects. 1219 subjects with no
MCI diagnosis at the BL visit were excluded. After-
wards, 124 MCI-subjects with no follow-up diagnosis
were excluded. The diagnosis of 101 subjects reverted
at any follow-up visit. For 76 subjects, no MRI scans
were available in the “ADNIMERGE” [48] merged ADNI
data set, and two additional subjects had no BL MRI
scan available. The image pipeline described in the “Fea-
ture extraction” section failed for the BL MRI scans of

nine subjects. Overall, 719 subjects—400 sMCI and 319
pMCI—were included in the experiments. Demographic
data, the number of ApolipoproteinEε4 (ApoEε4) alle-
les, the Mini-Mental State Examination (MMSE), and
Clinical Dementia Rating (CDR) scores are summarized
in Table 1. In the pMCI group, the minimal conver-
sion time was 5.0 months, and the maximum conversion
time was 137.7 months. For the sMCI group, the latest
diagnosis was recorded between 4.7 and 156.2 months
after BL.
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Fig. 2 Flow chart of the subject selection for the ADNI data set. On the right side of this diagram, exclusion criteria and the number of subjects
excluded for each criterion are described. The number of remaining subjects is summarized on the left side of this diagram. Finally, 719 subjects
were included in the experiments

The same exclusion criteria were applied to the AIBL
cohort. Figure 3 summarizes the exclusion process for
the AIBL data set. Initially, the AIBL data set v3.3.0
contained 858 subjects. 714 of those subjects had a
diagnosis of CN or AD. Another 97 subjects had no

follow-up diagnosis available. The diagnosis of seven sub-
jects reverted at any follow-up visit. Those subjects were
excluded from the data set. Another four subjects had no
MRI scan, and eight subjects had no MRI scan available
at the BL visit. Those criteria result in 28 AIBL subjects

Table 1 Demographic data, cognitive tests, and the number of ApoEε4 alleles of the selected ADNI subjects separated by diagnosis
group

Variable sMCI pMCI � p value

n 400 319 719

Age (in years) 73.2±7.5 74.0±7.1 73.6±7.3 0.1281

Gender (proportion of females) 40.3% 40.1% 40.2% 1.0000

Gender (proportion of males) 59.8% 59.9% 59.8%

MMSE 27.8±1.8 27.0±1.7 27.4±1.8 <0.0001

CDR 0.5±0.0 0.5±0.0 0.5±0.0 0.2640

ApoEε4 (proportion of subjects with 0 alleles) 56.8% 34.2% 46.7% <0.0001

ApoEε4 (proportion of subjects with 1 allele) 34.0% 49.5% 40.9%

ApoEε4 (proportion of subjects with 2 alleles) 9.3% 16.3% 12.4%

Time to final diagnosis in months 47.3±32.6 30.6±24.7 39.8±30.4 <0.0001

For continuous features, mean and standard deviation are given. p value are calculated using Mann-Whitney U test [49, 50] for continuous features and using χ2-test for
ordinal and nominal features
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Fig. 3 Flow chart of the subject selection for the AIBL data set. On the right side of this diagram, exclusion criteria and the number of subjects
excluded for each criterion are described. The number of remaining subjects is summarized on the left side of this diagram. Finally, 28 subjects were
included in the experiments

included in these experiments. The demographics, and
cognitive test results at the BL visit, are summarized in
Table 2.

Feature extraction
The acquisition protocols for the ADNI scans were
described in detail in Jack et al. [51] for ADNI-1, in Jack
et al. [52] for ADNI-2 and ADNIGO, and in Weiner et al.
[53] for ADNI-3. This research included T1-weighted
MRI scans recorded at the BL visit. The acquisition
parameters differ between scanners. During the ADNI-1
study phase, scans were recorded using a field strength of
1.5 T. In the remaining study phases, 3.0 T was used as the
MRI field strength.
The AIBL T1-weightedMRI scans followed the protocol

of the ADNI 3D T1-weighted sequences. All scans had a
resolution of 1 × 1 × 1.2 mm.
Using the FreeSurfer v6.0 [54] recon-all pipeline, vol-

umetric features were extracted from 34 cortical areas
per hemisphere of the Desikan–Killiany–Tourville (DKT)
atlas [55], 34 subcortical areas [56], and the estimated
Total Intracranial Volume (eTIV). FreeSurfer shows good
test-retest reliability between scanners and across field
strengths [57]. The resulting 103 volumetric features were
normalized by eTIV as recommended for volumes in
Westman et al. [58].

Data set splitting
At the subject level, the ADNI data set was split into three
distinct subsets. The training set included 65% (467 sub-
jects) of the data, the validation set included 15% (108
subjects), and the test set consisted of the remaining 20%
(144 subjects). The splitting was executed within each
diagnostic group to ensure representative distributions.
As an additional external test set, the AIBL data set was
used. During model training, none of the AIBL subjects
were used in the training or model selection process. All
data sets were preprocessed by performing centering and
scaling. The parameters for this step were calculated for
the training set and reused for the validation, test, and
AIBL set.

Feature selection
Initially, 103 volumes were extracted from the MRI scans.
RF-importance was calculated for each MRI feature and
the training set. The mean RF-importance of all fea-
tures was used as a threshold. MRI features with an
RF-importance smaller than this threshold were excluded
from the data set. The feature selection was imple-
mented using the Python library sci-kit [59] version 0.24.0
(https://scikit-learn.org/stable/, Accessed: 18 May 2021).
The selected MRI features were expanded using three
demographic features (age, gender, and count of ApoEε4

https://scikit-learn.org/stable/
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Table 2 Demographic data, cognitive test scores, and the number of ApoEε4 alleles of the selected AIBL subjects separated by
diagnosis group

Variable sMCI pMCI � p value

n 16 12 28

Age (in years) 77.8±6.9 75.3±5.8 76.8±6.5 0.2856

Gender (proportion of females) 37.5% 33.3% 35.7% 1.0000

Gender (proportion of males) 62.5% 66.7% 64.3%

MMSE 28.0±1.7 26.3±1.6 27.3±1.8 0.0133

CDR 0.4±0.2 0.5±0.0 0.5±0.1 0.2317

ApoEε4 (proportion of subjects with 0 alleles) 56.3% 16.7% 39.3% 0.0550

ApoEε4 (proportion of subjects with 1 allele) 37.5% 50.0% 42.9%

ApoEε4 (proportion of subjects with 2 alleles) 6.3% 33.3% 17.9%

Time to final diagnosis in months 41.3±22.4 28.4±14.2 35.7±20.1 <0.2457

For continuous features, mean and standard deviation are given. p values are calculated using Mann-Whitney U test [49, 50] for continuous features and using χ2-test for
ordinal and nominal features

alleles) and three cognitive test scores (MMSE, logical
tests to evaluate the long-term memory (Logical mem-
ory, delayed – LDELTOTAL), and the short-termmemory
(Logical memory, immediate – LIMMTOTAL)).

Data valuation based on Data Shapley or LOO
The idea of data valuation is to identify the subjects with
themost informative data, restrict the training set to those
subjects, and thus improveMLmodels. In this article, ran-
dom subject exclusion, LOO [41] data valuation, and Data
Shapley [15] are compared.
During random subject exclusion, subjects were ran-

domly excluded from the data set without any previous
valuation.
During the LOO and Data Shapley algorithms, ML

models were trained to calculate the contribution of each
subject. The entire training data set D = {1, ..., n} consists
of n subjects. The performance of an ML model, trained
with data set D, is denoted as V (D). In this work, V (D)

is the classification accuracy for a predefined validation
data set. The contribution of sample i on the overall model
performance was called �i.
LOO data valuation calculates �i as the accuracy differ-

ence of the ML models trained with and without a given
subject i. This definition is formally described in Eq. 1.

�i = V (D) − V (D \ {i}) (1)

Two ML models were trained to calculate the contri-
bution of each subject. The first one was trained for the
entire training set and the second one for the entire train-
ing set except for the subject of interest. However, this
method lacked for principles of fairness. In this context,
unfairness means that the sum of all individual contri-
butions and the no-information rate is not equal to the
overall model performance. Additionally, LOO is a greedy
method that does not consider subject interactions.
Data Shapley values [15], which are based on Shapley

values [36] (described in the “Shapley values” section), are
one possibility to overcome this problem. Data Shapley
values reach fairness by considering all subsets of subjects
in the training data set and calculate a weighted sum of the
individual contributions.
The computational effort for the exact calculation of

Data Shapley values grows exponentially with the num-
ber of subjects n because a set of n-elements contains
2n − 1 non-empty subsets. However, there are effective
possibilities to estimate Data Shapley values. In this work,
Truncated Monte Carlo (TMC) Shapley [15] was used.
The TMC algorithm starts with a random permutation

of the training set. First, the performance of a random
model is calculated. In this work, the accuracy for the pre-
defined validation data set was used as the performance
score. Afterwards, the randomly permuted subjects are
successively added to the training data set, and ML

Table 3 Contingency table for the classification between sMCI and pMCI subjects

Prediction Diagnosis

pMCI sMCI

pMCI True positive (TP) False positive (FP)

sMCI False negative (FN) True negative (TN)
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Table 4 RF feature importance calculated for the selected MRI volumetric features using an RF-importance filter strategy

Anatomical brain structure Feature name RF-importance

Left hippocampus Left-Hippocampus 0.035

Left entorhinal cortex lh_entorhinal_volume 0.033

Right amygdala Right-Amygdala 0.032

Left middle temporal gyrus lh_middletemporal_volume 0.029

Left amygdala Left-Amygdala 0.028

Right hippocampus Right-Hippocampus 0.026

Right entorhinal cortex rh_entorhinal_volume 0.021

Left fusiform gyrus lh_fusiform_volume 0.020

Right banks of superior temporal sulcus rh_bankssts_volume 0.019

Left supramarginal gyrus lh_supramarginal_volume 0.019

Right middle temporal gyrus rh_middletemporal_volume 0.017

Right fusiform gyrus rh_fusiform_volume 0.017

Left superior parietal lobule lh_superiorparietal_volume 0.015

Left inferior parietal lobule lh_inferiorparietal_volume 0.014

Left banks of superior temporal sulcus lh_bankssts_volume 0.014

Right cortex rhCortexVol 0.013

Left inferior temporal gyrus lh_inferiortemporal_volume 0.013

Right nucleus accumbens area Right-Accumbens-area 0.012

Left insular cortex lh_insula_volume 0.012

Left cuneus lh_cuneus_volume 0.012

Right inferior parietal lobule rh_inferiorparietal_volume 0.011

Left transverse temporal gyrus lh_transversetemporal_volume 0.010

Left pars opercularis lh_parsopercularis_volume 0.010

Left pericalcarine cortex lh_pericalcarine_volume 0.010

Left superior frontal gyrus lh_superiorfrontal_volume 0.010

Left posterior cingulate cortex lh_posteriorcingulate_volume 0.010

Left isthmus of cingulate gyrus lh_isthmuscingulate_volume 0.010

Right inferior lateral ventricle Right-Inf-Lat-Vent 0.010

Right isthmus of cingulate gyrus rh_isthmuscingulate_volume 0.010

Right thalamus proper Right-Thalamus-Proper 0.010

Left globus pallidus Left-Pallidum 0.010

Right superior frontal gyrus rh_superiorfrontal_volume 0.010

Right insular cortex rh_insula_volume 0.010

models are trained. The contribution of the respectively
added subject is calculated by subtracting the previously
achieved validation performance from the validation per-
formance of the new model. This procedure is repeated
until new subjects reach only marginal improvements.
The reason to use this truncation strategy is that sub-
jects added at the beginning show higher contributions
than subjects added later. Afterwards, the procedure is
repeated with a new permutation. One contribution is
thus calculated for each permutation and each subject.

The average contribution per subject estimates the Data
Shapley values. The algorithm terminates if the calculated
Shapley values meet a previously defined convergence
criterion [15].
The pipeline of Ghorbani and Zou [15] (commit

= 96e8ecb), available online (https://www.github.com/
amiratag/DataShapley, Accessed: 18 May 2021) was used
to implement the TMC Data Shapley algorithm. The
experiments used logistic regression (LR) and RF models
as base classifiers. Those models were implemented using

https://www.github.com/amiratag/DataShapley
https://www.github.com/amiratag/DataShapley
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Fig. 4 SHAP summary plot, visualizing the LR Data Shapley values of the sMCI diagnostic group dependent on the feature values. Each point
visualizes a Data Shapley value for one subject and one feature. The color of the points depends on the feature values, and the horizontal axis shows
the calculated Shapley values. The vertical axis represents both the features, ordered by the mean absolute Shapley values and their distribution

the Python library sci-kit [59] version 0.24.0 (https://
scikit-learn.org/stable/, Accessed: 18 May 2021). The
hyperparameters followed the recommendations of the
TMC Data Shapley implementation. In the experiments,
four iterations of the TMC Data Shapley algorithm were
performed with different seeds. The marginal contribu-
tions were averaged to generate a more robust model. The
best-performing cutoff for the validation set was calcu-
lated using optimization. Subjects that achieved positive
Data Shapley values improved the accuracy for the inde-

pendent validation set, whereas subjects with negative
Shapley values worsened the validation accuracy.

Training of RF classifiers
RFs [42] were trained for the final classification between
sMCI and pMCI subjects. RFs train multiple Decision
Trees (DTs), each with a randomly selected subset of fea-
tures and observations. The majority voting of those DTs
predicts the final classification. The randomly selected
features and observations make those models more robust

Fig. 5 SHAP summary plot, visualizing the LR Data Shapley values of the pMCI diagnostic group dependent on the feature values. Each point
visualizes a Data Shapley value for one subject and one feature. The color of the points depends on the feature values, and the horizontal axis shows
the calculated Shapley values. The vertical axis represents both the features, ordered by the mean absolute Shapley values and their distribution

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
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Fig. 6 SHAP summary plot, visualizing the RF Data Shapley values of the sMCI diagnostic group dependent on the feature values. Each point
visualizes a Data Shapley value for one subject and one feature. The color of the points depends on the feature values, and the horizontal axis shows
the calculated Shapley values. The vertical axis represents both the features, ordered by the mean absolute Shapley values and their distribution

and prevent overfitting. The RF algorithm was imple-
mented using the Python sci-kit library [59] version 0.24.0
(https://scikit-learn.org/stable/, Accessed: 18 May 2021).

Training of XGBoost classifiers
XGBoost [43] classifiers were trained in compari-
son to RF classifiers. XGBoost is a gradient-boosting

model distributed as an open-source software library
(https://xgboost.readthedocs.io/en/latest/, Accessed: 18
May 2021). The sequential combination of multiple weak
classifiers into a strong joint classifier is the idea of boost-
ing models. Gradient-boosting models fulfill this idea by
training the initial classifier to learn the original depen-
dent variable and the subsequent classifiers to learn the

Fig. 7 SHAP summary plot, visualizing the RF Data Shapley values of the pMCI diagnostic group dependent on the feature values. Each point
visualizes a Data Shapley value for one subject and one feature. The color of the points depends on the feature values, and the horizontal axis shows
the calculated Shapley values. The vertical axis represents both the features, ordered by the mean absolute Shapley values and their distribution

https://scikit-learn.org/stable/
https://xgboost.readthedocs.io/en/latest/
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gradients of the previous classifier. The final model pre-
diction is the sum of the weak classifiers. XGBoost is an
implementation of gradient-boosting that promises scala-
bility, parallelization, and distributed execution.
In the experiments, DTs were the base classifiers. The

XGBoost classifier was implemented using the xgboost
v1.2.0 Python library (https://xgboost.readthedocs.io/
en/latest/python/python_intro.html, Accessed: 18 May
2021).

Evaluation
The evaluation of the models was performed for the inde-
pendent ADNI test set. None of those subjects was used
during data valuation and model training. The perfor-
mance of each model was evaluated using two metrics—
namely accuracy (ACC) and F1-score (F1). The accuracy
described in Eq. 2 measures the relative count of correctly
classified subjects. The F1-score (F1) is described in Eq. 3.
Table 3 shows the contingency table used to calculate the
metrics.

ACC = TP + TN
TP + TN + FP + FN

(2)

F1 = TP
TP + 1

2 (FP + FN)
(3)

External validation
The external validation performed for the AIBL data set
inspected the generalizability of the model. During data

valuation and model training, the AIBL data set was not
used.

Interpretation model
For interpretation of black-box RF and XGBoost classi-
fiers, Shapley values were used. In this context, the differ-
ences between the individual predictions and the average
model prediction are explained by feature expressions.
The exact calculation of Shapley values for each sub-

ject and each feature requires multiple retraining of the
ML black-box model. The computational effort exponen-
tially increases with the number of features included in
the models. For this reason, Kernel SHAP [44] was used
to time-efficiently estimate Shapley values.
Kernel SHAP is based on Local Interpretable Model-

agnostic Explanations (LIME) [60]. LIME are local sur-
rogate models to interpret individual observations of
black-box models. For each observation, LIME generate
a new permutation of the training set. Then, the LIME
algorithm fitted regression models to the weighted per-
mutation data set. The weights depend on the distance
from the observation at interest. Data points near this
observation are weighted higher than data points far
away.
Interpretable explanation models guaranteed inter-

pretability. Eq. 4 shows the local optimization function of
the LIME model. L(f , g,πx) is the loss function between
the black-box model f and the local explanation model g.
High complexity is prevented by using �(g). πx defines
the weighting of the observations.

Fig. 8 Plot showing the mean RF accuracies for the independent ADNI test set (no information rate 55.56%). Different methods were used to
identify and focus on the training subjects (n = 467) with the most informative data. Ten repetitions with different seeds were performed for every
exclusion data set

https://xgboost.readthedocs.io/en/latest/python/python_intro.html
https://xgboost.readthedocs.io/en/latest/python/python_intro.html
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g∗(x) = argmin
g∈G

L(f , g,πx) + �(g) (4)

Kernel SHAP uses LIME to estimate Shapley values by
fitting an additive linear model described in Eq. 5. In this
equation, x′ is a simplified representation of the black-box
model input features. For tabular data, the simplified fea-
tures are binned binary feature representations. M is the
total number of simplified features, and�i are the Shapley
values for each feature i.

g(x′) = �0 +
M∑

i=1
�i · x′

i (5)

The LIME parameters are described in Eqs. 6 and 7 and
further derived in Lundberg and Lee [44]. Additionally,
�(g) is set to zero. hx(x′) = x maps the simplified input
features x′ to the original feature space.

πx(x′) = M − 1
(M
|x′|

) · |x′| · (M − |x′|) (6)

L(f , g,πx′) =
∑

x′∈X

(
f
(
hx(x′)

) − g(x′)
)2 · πx′(x′) (7)

Kernel SHAP is part of the SHAP framework [44].
In this framework, three properties—namely local accu-
racy, missingness, and consistency—are described. SHAP
Values fulfilled all three criteria.
The Python library SHAP, version 0.38.1 (https://github.

com/slundberg/shap, Accessed: 18 May 2021), was used
to implement the Kernel SHAP explanation method.

Results
This section describes the results of the experiments
based on the ML workflow. Data Shapley values and LOO
values were calculated using RF and LR base classifiers.
However, RF and XGBoost classifiers were used to train
the final ML models. The base classifier used to calculate
Data Shapley values are exclusively used in front of the
“Data Shapley values” or “Data Shapley method” terms to
avoid confusion. Thus, for example, Data Shapley values
calculated with an LR base classifier are denoted as LR
Data Shapley values.

Feature selection
The RF-importance filter strategy selected 33 of the ini-
tially 103 MRI features. The selected features and the
RF-importances are summarized in Table 4. The most
important features were volumes of the left hippocam-
pus, the left entorhinal cortex, and the right amygdala.
Most of those features were previously associated with AD
progression [61–64].

Data valuation based on Data Shapley or LOO
This section investigates data valuation results achieved
using Data Shapley values. Subjects with high Data Shap-
ley values were identified as having the most informative
data. The data set was split between diagnostic groups
after the calculation of LR and RF Data Shapley values.
An RF model to predict Data Shapley values was trained
for each group. For each Data Shapley base classifier and

Fig. 9 Plot showing the mean RF accuracies for the external AIBL test set (no information rate 57.14%). Different methods were used to identify and
focus on the training subjects (n = 467) with the most informative data. Ten repetitions with different seeds were performed for every exclusion
data set

https://github.com/slundberg/shap
https://github.com/slundberg/shap


Bloch et al. Alzheimer’s Research & Therapy          (2021) 13:155 Page 13 of 30

Table 5 RF accuracies (mean ± standard deviation in %) for the independent ADNI test set (no information rate 55.56%)

Exclusion method Number of training subjects excluded

(base model) 0 50 100 150 200 250

Random (-) 62.64±0.87 62.29±0.93 61.46±1.87 61.11±1.49 62.36±1.61 63.47±2.31

LOO (LR) 62.64±0.87 61.53±1.87 63.47±1.08 62.92±1.73 61.46±1.36 59.72±1.58

LOO (RF) 62.64±0.87 63.68±1.99 62.36±2.19 63.68±1.86 62.71±1.08 63.96±1.95

Data Shapley (LR) 62.64±0.87 64.72±0.87 64.93±0.78 65.21±1.26 65.62±1.29 65.00±2.24

Data Shapley (RF) 62.64±0.87 63.68±1.76 66.25±0.89 66.46±1.28 66.67±1.16 67.29±1.18

Different methods were used to identify and focus on the training subjects with the most informative data. Ten repetitions with different seeds were performed for every
exclusion data set. The best results are highlighted in bold

each diagnostic group, one SHAP summary plot was cre-
ated. Those plots investigated the associations between
Data Shapley values and feature values. The features were
sorted based on the RF feature importance. For the sMCI
group, it was expected that subjects with large brain vol-
umes [61, 65–67], no ApoEε4 alleles [68–70] and good
performances in cognitive tests [71] were more repre-
sentative and would reach higher Data Shapley values.
Consistently, it was expected that MCI subjects with small
brain volumes, one or two ApoEε4 alleles and bad perfor-
mances in cognitive tests more likely convert to AD and
would thus reach higher Data Shapley values.
Figure 4 shows the SHAP summary plot for the LR Data

Shapley values and the sMCI diagnostic group. The num-
ber of ApoEε4 alleles was the most important feature to
predict the LR Data Shapley values in the sMCI group.
The absence of ApoEε4 alleles (colored in blue) was asso-
ciated with high LR Data Shapley values. Smaller LR Data
Shapley values were reached for subjects with one (col-
ored in purple) or two (colored in red) ApoEε4 alleles.
The second most important feature was the volume of the
left inferior parietal lobule. For this feature, small volumes
(colored in blue) were mainly associated with small LR
Data Shapley values. However, some subjects with small
volumes of the left inferior parietal lobule reached high
LR Data Shapley values. This indicated that the LR Data
Shapley values were associated with complex patterns and
depended on many features. The volume of the right tha-
lamus proper was the third most important feature to
predict the LR Data Shapley values in the sMCI group.
Small brain volumes were associated with high LR Data
Shapley values. The LDELTOTAL and LIMMTOTAL cog-
nitive test scores showed those good test performances
(colored in red) were associated with high LR Data Shap-
ley values, and poor test performances were associated
with small LR Data Shapley values. The sMCI subject
that reached the smallest LR Data Shapley value had two
ApoEε4 alleles (colored in red), bad performances in the
cognitive tests, a rather young age of 65.7 years, and a
complex pattern of the MRI features. The combination of

poor test performances, two ApoEε4 alleles, and young
age might cause the small LR Data Shapley value of this
subject.
The SHAP summary plot shown in Fig. 5 visualizes the

association of the LR Data Shapley values and the feature
values in the pMCI group. The volume of the right tha-
lamus proper was the most important feature to predict
the LR Data Shapley values in the pMCI group. It was
surprisingly noted that high brain volumes were associ-
ated with high LR Data Shapley values. The LDELTOTAL
cognitive test score was the second most important fea-
ture in this plot. Poor test performances (colored in blue)
were associated with positive LR Data Shapley values. A
similar observation can be seen for the LIMMTOTAL
cognitive test score, which was the third most important
feature in this plot. The pMCI subject with the small-
est LR Data Shapley value had good cognitive test scores,
and rather high volumetric feature values, except for the
right thalamus proper, and the right hippocampus. The
small LR Data Shapley value might be caused by good test
performances and high brain volumes, which were less
representative for pMCI subjects.
The SHAP summary plot in Fig. 6 shows the associa-

tions between the feature values and the RF Data Shapley
values in the sMCI diagnostic group. The most important
feature in this plot was the LDELTOTAL cognitive test
score. High cognitive test scores were associated with high
RF Data Shapley values, and small test scores were associ-
ated with small RF Data Shapley values. The same applied
to the LIMMTOTAL cognitive test score, which was the
third most important feature. The second most impor-
tant feature was the volume of the left amygdala. Small
volumes of the left amygdala were associated with both
large and small RF Data Shapley values. High volumes of
the left amygdala were associated with medium RF Data
Shapley values. The sMCI subject with the smallest RF
Data Shapley value was rather young (65.7 years) and had
bad cognitive test performances, two ApoEε4 alleles and
medium to high brain volumes. The small RF Data Shap-
ley value might result from the two ApoEε4 alleles and the
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Table 6 Mean RF accuracies and F1-scores (in %) for the independent ADNI test set (no information rate 55.56%)

Exclusion method Zero-cutoff Max valid Max test

n ACC (in %) F1 (in %) n ACC (in %) F1 (in %) n ACC (in %) F1 (in %)

Random (-) – – – 41 63.47 66.49 449 67.01 73.77

LOO (LR) 84 63.06 65.75 102 64.31 66.70 5 64.44 68.23

LOO (RF) 49 63.47 66.99 23 63.33 67.09 273 65.42 68.50

Data Shapley (LR) 152 65.76 68.78 340 65.49 67.18 329 68.89 70.33

Data Shapley (RF) 164 66.88 72.21 134 66.25 70.96 321 68.82 74.53

Different methods were used to identify and focus on the training subjects with the most informative data. The zero-cutoff method excluded all training subjects with Data
Shapley values smaller than zero. Max valid was the threshold achieved by maximizing the results for the independent validation set. Max test was the optimistic threshold
which achieved the best results for the test set. Ten repetitions with different seeds were performed for every exclusion data set. The best results are highlighted in bold

bad cognitive test results. This subject also achieved the
smallest LR Data Shapley value in the sMCI group.
The SHAP summary plot visualized in Fig. 7 shows the

associations between feature values and RF Data Shap-
ley values in the pMCI group. For the pMCI group, the
LDELTOTAL cognitive test score was the most important
feature. Poor test performances were associated with high
RF Data Shapley values, and subjects with high LDELTO-
TAL test scores reached small RF Data Shapley values.
The second most important feature was the volume of the
left supramarginal gyrus. Subjects with small brain vol-
umes mainly achieved positive Data Shapley values. The
pMCI subject with the smallest RF Data Shapley value
was a subject with high performance in the cognitive
tests and high brain volumes except for the right nucleus
accumbens area. The small RF Data Shapley value might
be associated with good cognitive test performances and
high brain volumes. This pattern is less representative for
pMCI subjects.

Training of RF classifiers
This section compares the results of RF models that
exclude subjects based on different data valuation tech-
niques. Therefore, subjects with the smallest contribu-
tions are successively excluded from the training set. Ten
RF models were trained with the associated training set to
reach more robust results. Each of those ten models was
trained with a different seed. The performances are mean
accuracies and F1-scores for the independent test set.
Figures 8 and 9 visualize the mean RF accuracies depen-
dent on the number of subjects excluded from the training
set and the data valuation strategy. Tables 5 and 7 sum-
marize those results for predefined numbers of subjects
excluded from the training set. Additionally, Tables 6 and
8 summarize the mean accuracies and F1-scores achieved
for the test set by excluding all subjects with negative
Data Shapley values from the data set, for the maximum
exclusion cutoff determined for the validation set, and the
maximum exclusion cutoff determined for the test set.
However, the maximum exclusion cutoff for the test set

was not validated for an independent test set and is thus
an optimistic estimation. The models which excluded all
subjects with Data Shapley values smaller than zero were
called zero-cutoff models. The idea of the zero-cutoff is
that subjects with negative Data Shapley values decreased
the classification results for the validation set. 164 sub-
jects reached RF Data Shapley values smaller than zero,
and 152 subjects reached LR Data Shapley values smaller
than zero.

Evaluation
Figure 8 shows the mean RF accuracies for the ADNI
test set dependently on the number of subjects excluded
from the training set and the data valuation strategies.
Tables 5 and 6 summarize those results. The no informa-
tion rate of the ADNI test set was 55.56%, and the base
models trained on the entire training set reached a mean
accuracy of 62.64%.
If those subjects with the smallest RF and LR Data Shap-

ley values were excluded from the training set, improved
classification results can be recognized. The increase of
the RF Data Shapley method was slightly higher than the
LR Data Shapley results. However, the overall best results
on the test set were reached by excluding those 329 sub-
jects with the smallest LR Data Shapley values. Those
models reached a mean accuracy of 68.89% and an F1-
score of 70.33%. The LR Data Shapley method found an
optimum for the validation set by excluding 340 training
subjects. The associated model reached a mean accu-
racy of 65.49% and thus outperformed the base model
by 4.55% (2.85 percentage points). The RF model that
excluded subjects with LR Data Shapley values smaller
than zero reached amean accuracy of 65.76% andwas thus
4.98% (3.12 percentage points) better than the basemodel.
The LR Data Shapley exclusion strategy achieved results
smaller than the no information rate after approximately
375 training subjects were excluded.
The RFData Shapleymethod outperformed all the other

methods between cutoff values of approximately 75 and
375. The best result for the RF Data Shapley method was
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Table 7 RF accuracies (mean ± standard deviation in %) for the external AIBL data set (no information rate 57.14%)

Exclusion method Number of training subjects excluded

(base model) 0 50 100 150 200 250

Random (-) 61.79±3.93 61.43±5.00 59.29±2.37 61.79±2.79 58.21±2.29 53.21±3.37

LOO (LR) 61.79±3.93 57.86±3.50 58.93±4.30 55.71±3.64 56.79±5.40 59.29±3.98

LOO (RF) 61.79±3.93 57.50±6.07 63.57±3.11 62.14±5.80 62.86±5.80 64.29±2.77

Data Shapley (LR) 61.79±3.93 63.57±4.74 60.71±4.23 60.36±1.92 58.57±5.10 57.86±3.85

Data Shapley (RF) 61.79±3.93 63.21±3.21 61.43±2.67 58.93±2.88 57.50±4.06 55.36±1.79

Different methods were used to identify and focus on the training subjects with the most informative data. Ten repetitions with different seeds were performed for every
exclusion data set. The best results are highlighted in bold

68.82%, reached by excluding 321 training subjects. This
model achieved a mean F1-score of 74.53%. The opti-
mization process, which was executed for the validation
set, excluded 134 training subjects and reached a mean
accuracy of 66.25%. The RF Data Shapley methods per-
formed worse than the no information rate of the ADNI
data set after approximately 425 subjects were excluded.
The model trained on those 164 subjects with positive RF
Data Shapley values reached a mean accuracy of 66.88%
and was thus 6.77% (4.24 percentage points) better than
the base model. The best mean accuracy of the random
exclusion method was 67.01%, which was 2.73% (1.88
percentage points) worse than the best LR Data Shapley
results. This result was achieved by randomly excluding
449 and thus 96.15% of the training subjects. A disadvan-
tage of this model was that it included only a few data
samples. Thus, the risk of a selection bias was large, which
increases the risk of less robust performances for other
cohorts. Overall, for the Data Shapley method, improved
performances for the independent ADNI test set were
observed.

External validation
It can be seen in Fig. 9 that the scattering of the classi-
fication results for the external AIBL data set is higher
than for the independent ADNI test set. Tables 7 and 8
summarize the results visualized in this figure. The no
information rate of the AIBL data set was 57.14%, and the

base model reached a mean accuracy of 61.79%. The RF
Data Shapley method showed a slight increase of accu-
racies by excluding between 0 and 75 training subjects.
The maximum mean accuracy was achieved by excluding
those 14 subjects with the smallest RF Data Shapley val-
ues. The mean accuracy of those models was 65.36%, and
the mean F1-score was 72.30%. After this peak, the accu-
racies of the RFData Shapleymethod decreased except for
a small peak by excluding almost all training subjects. The
validation cutoff value was 134 for this method, and the
associated models reached a mean accuracy of 60.36% for
this threshold. This accuracy was 2.30% (1.42 percentage
points) smaller than the base model performance.
The LR Data Shapley method had a course that was sim-

ilar to the RF Data Shapley exclusion method, except for
a high peak by excluding between 350 and 425 subjects
from the training set. The best model, which excluded
399 training subjects, reached an accuracy of 73.57% and
an F1-score of 75.74%. The cutoff value which was cal-
culated for the validation set was 340. The associated
models reached a mean accuracy of 61.07%. This result
was smaller than the base model performance.
The random exclusionmethod and the LR LOOmethod

had a slightly decreasing course for the AIBL data set. The
RF LOO method outperformed all the other methods by
excluding between 100 and 325 subjects. The best accu-
racy of 68.93% was achieved by excluding 186 subjects
from the training set.

Table 8 Mean RF accuracies and F1-scores (in %) for the AIBL data set (no information rate 57.14%)

Exclusion method Zero-cutoff Max valid Max test

n ACC (in %) F1 (in %) n ACC (in %) F1 (in %) n ACC (in %) F1 (in %)

Random (-) – – – 41 58.57 66.42 445 66.07 75.81

LOO (LR) 84 62.50 68.81 102 56.79 64.44 402 68.21 76.33

LOO (RF) 49 57.86 65.40 23 61.79 69.45 186 68.93 76.63

Data Shapley (LR) 152 61.79 69.52 340 61.07 65.79 399 73.57 75.74

Data Shapley (RF) 164 57.86 68.94 134 60.36 70.05 14 65.36 72.30

Different methods were used to identify and focus on the training subjects with the most informative data. The zero-cutoff method excluded all training subjects with Data
Shapley values smaller than zero. Max valid was the threshold achieved by maximizing the results for the independent validation set. Max test was the optimistic threshold
which achieved the best results for the test set. Ten repetitions with different seeds were performed for every exclusion data set. The best results are highlighted in bold
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Fig. 10 SHAP force plot for an ADNI sMCI subject (PTID = 123_S_4904) from the training set to explain the prediction of the RF base model. SHAP
force plots show that the individual prediction (f(x) = 0.26) consists of the sum of all feature Shapley values and the average model prediction (base
value = 0.4475). The associated Shapley value of a feature is visualized using the length of an arrow. Feature expressions with large Shapley values
have strong effects on the individual prediction and are shown in the middle of SHAP force plots. Pathogenic feature expressions with Shapley
values higher than zero are shown as red and protective expressions as blue arrows. The MRI volumetric features and the cognitive test scores were
min-max-normalized

Fig. 11 SHAP force plot for an ADNI sMCI subject (PTID = 123_S_4904) from the training set to explain the prediction of the RF model, trained by
excluding those 134 training subjects with the smallest LR Data Shapley values. SHAP force plots show that the individual prediction (f(x) = 0.80)
consists of the sum of all feature Shapley values and the average model prediction (base value = 0.3704). The length of an arrow visualized the
associated Shapley value of a feature. Feature expressions with large Shapley values have strong effects on the individual prediction and are shown
in the middle of SHAP force plots. Pathogenic feature expressions have Shapley values higher than zero and are visualized as red arrows. Protective
expressions are visualized as blue arrows. The MRI volumetric features and the cognitive test scores were min-max-normalized

Fig. 12 SHAP summary plot for the RF model. No training subjects were excluded. SHAP summary plots aggregate the explanation of individual
predictions of the entire training and test set. Each point visualizes a Shapley value for a subject and a feature. The color of the points depends on
the feature values, and the horizontal axis shows the calculated Shapley values. The vertical axis represents both the features, ordered by the mean
absolute Shapley values and their distribution. The positive class is pMCI
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Fig. 13 SHAP summary plot for the RF model. 134 training subjects with the smallest RF Data Shapley values were excluded. SHAP summary plots
aggregate the explanation of individual predictions of the entire training and test set. Each point visualizes a Shapley value for a subject and a
feature. The color of the points depends on the feature values, and the horizontal axis shows the calculated Shapley values. The vertical axis
represents both the features, ordered by the mean absolute Shapley values and their distribution. The positive class is pMCI

Interpretationmodel
SHAP force plot explain individual model predictions,
which are important in clinical practice. Figure 10 shows
a SHAP force plot for the RF base model and the sMCI
training subject with the PTID 123_S_4904. This sMCI
subject reached the smallest LR and RF Data Shapley
values and was identified as a subject with less infor-
mative data. The average model prediction for this RF
model was 0.4475, and the model prediction probability
for the visualized subject was 0.26. The SHAP force plot
explains the difference between those two values using the
model features. The lengths of the arrow parts in this plot
demonstrate the Kernel SHAP values of those features.
Feature expressions with positive Kernel SHAP values and
thus a pathogenic effect on the overall prediction are col-
ored in red and feature expressions with a negative Kernel
SHAP value had a protective effect and are colored in blue.
For the subject visualized in Fig. 10, the most important
feature was the volume of the left superior parietal lob-
ule. The subject had a min-max-scaled volume of 0.786,
which is a rather high volume. The model learned that
this feature expression had a protective effect on this sub-
ject. Therefore, the risk of this subject converting to AD
was decreased by the small superior parietal lobule vol-
ume. The reduction of GM was previously associates with
AD progression in the superior parietal lobule [72]. The

LDELTOTAL cognitive test score was the most important
feature with a pathogenic effect on the prediction prob-
ability for this subject. The normalized volume of this
feature was 0.091 and thus a poor test performance.
Figure 11 shows a SHAP force plot for the same sub-

ject, but an RF model trained on all training subjects
except for those 134 subjects with the smallest LR Data
Shapley values. 134 was the cutoff value that reached the
best mean accuracy for the validation set. This model
misclassified the subject as a pMCI subject with a prob-
ability of 0.80. The prediction in this classification model
is based on cognitive test scores. The most important
feature expression for this prediction was the bad per-
formance in the LDELTOTAL cognitive test. The min-
max-scaled LDELTOTAL score of this subject was 0.091
(unscaled: 1). The model learned that the poor test per-
formance increased the subject’s risk of converting to AD.
The most important feature in this model with a pro-
tective effect was the MMSE cognitive test score, which
had a high min-max-normalized value of 0.714 (unscaled:
28). It can be inferred that this subject reached a small
Data Shapley value because of the bad performance in
LDELTOTAL and LIMMTOTAL cognitive tests and two
ApoEε4 alleles and young age (65.7 years), which is not
visualized in this plot. This combination might suggest
that this subject will prospectively convert to AD. It can
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Fig. 14 Plot showing the mean XGBoost accuracies for the independent ADNI test set (no information rate 55.56%). Different methods were used to
identify and focus on the training subjects (n = 467) with the most informative data. Ten repetitions with different seeds were performed for every
exclusion data set

be seen that the model which excluded 134 subjects from
the training set focussed more on cognitive test scores
for this subject and which might cause a more robust
model.
SHAP summary plots summarize the explanations of

the training, test, and validation subjects. Overall, due

to the atrophy pattern of AD, it was expected that large
brain volumes had a protective, and small brain vol-
umes had a pathogenic effect on the disease progression
[61, 65–67]. Additionally, an enlargement of the ventricles
was expected [73, 74] during the disease progression. As
ApoEε4 is a risk factor of AD, it was expected that the

Fig. 15 Plot showing the mean XGBoost accuracies for the external AIBL test set (no information rate 57.14%). Different methods were used to
identify and focus on the training subjects (n = 467) with the most informative data. Ten repetitions with different seeds were performed for every
exclusion data set
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Table 9 Mean XGBoost accuracies (mean ± standard deviation in %) for the independent ADNI test set (no information rate 55.56%)

Exclusion method Number of training subjects excluded

(base model) 0 50 100 150 200 250

Random (-) 62.01±1.59 60.42±1.28 59.51±2.54 59.79±1.37 62.57±1.50 64.58±1.42

LOO (LR) 62.01±1.59 60.14±1.73 59.72±1.91 61.46±1.68 59.03±1.89 56.94±1.58

LOO (RF) 62.01±1.59 61.04±2.35 58.54±1.59 61.11±1.64 61.74±2.25 59.72±2.04

Data Shapley (LR) 62.01±1.59 64.72±1.58 66.88±1.39 67.22±1.48 64.65±1.14 64.58±1.20

Data Shapley (RF) 62.01±1.59 63.61±1.79 66.18±1.55 66.81±1.83 67.15±1.20 66.46±1.12

Different methods were used to identify and focus on the training subjects with the most informative data. Ten repetitions with different seeds were performed for every
exclusion data set. The best results are highlighted in bold

presence of ApoEε4 alleles increases the risk to develop
AD [68–70].
The SHAP summary plot in Fig. 12 shows that the

most important model feature was the volume of the
left amygdala. The model found that small brain volumes
mainly had a pathogenic effect on the subject’s prediction.
Consistently, the model learned that high brain volumes
decreased the risk of a subject converting to AD. The sec-
ond most important feature in this model was the LDEL-
TOTAL cognitive test score. The model learned that high
test performances (colored in red) had a protective effect
on developing AD. Poor test performances (colored in
blue) instead had a pathogenic effect on the development
of AD.
The model shows the learned associations for the ten

most important features. All of those features except for
the volume of the left pallidum showed biologically plau-
sible associations, as small brain volumes and bad per-
formances in cognitive tests were associated with disease
progression.
Figure 13 shows the SHAP summary plot for an RF

model trained on the entire training set, except for those
134 subjects with the smallest RF Data Shapley values.
134 was the cutoff value optimized for the validation set
and the RF Data Shapley method. The most important
feature in this model was the LDELTOTAL cognitive test
score. The model learned that high test scores had a pro-

tective effect on the subjects prediction and small test
scores had a pathogenic effect. The same applies to the
LIMMTOTAL cognitive test score, which was the sec-
ond most important feature in this model. The volume
of the left middle temporal gyrus was the third most
important feature. The model learned that small vol-
umes increased the subject’s risk of converting to AD,
whereas high volumes had a protective effect. In com-
parison to the model trained on the entire training set,
the number of ApoEε4 alleles was more important in this
model. The model learned that the presence of ApoEε4
alleles was associated with AD progression. None of
the associations visualized in Fig. 13 showed a biologi-
cally implausible behavior. Overall, cognitive test scores
were more relevant in the model trained for the reduced
training set.

Training of XGBoost classifiers
This section describes the results for the XGBoost models
achieved by excluding subjects based on different data val-
uation techniques. The experiments correspond to those
executed for the RF classifier. Figures 14 and 15 visualize
the mean XGBoost accuracies dependent on the number
of training subjects excluded and the data valuation strat-
egy. Tables 9 and 11 summarize the results for predefined
cutoff values. Tables 10 and 12 summarize the mean accu-
racies and F1-scores for highlighting cutoffs of the test and

Table 10 Mean XGBoost accuracies and F1-scores (in %) for the independent ADNI test set (no information rate 55.56%)

Exclusion method Zero-cutoff Max valid Max test

n ACC (in %) F1 (in %) n ACC (in %) F1 (in %) n ACC (in %) F1 (in %)

Random (-) – – – 430 62.78 64.45 391 66.39 68.40

LOO (LR) 84 60.56 63.50 69 60.62 65.05 178 63.57 65.28

LOO (RF) 49 61.25 65.84 11 59.38 63.96 407 64.03 68.21

Data Shapley (LR) 152 68.06 71.02 248 65.07 67.89 144 68.47 71.22

Data Shapley (RF) 164 66.88 72.12 133 65.90 70.62 178 68.47 73.48

Different methods were used to identify and focus on the training subjects with the most informative data. The zero-cutoff method excluded all training subjects with Data
Shapley values smaller than zero. Max valid was the threshold achieved by maximizing the results for the independent validation set. Max test was the optimistic threshold
which achieved the best results for the test set. Ten repetitions with different seeds were performed for every exclusion data set. The best results are highlighted in bold



Bloch et al. Alzheimer’s Research & Therapy          (2021) 13:155 Page 20 of 30

Table 11 XGBoost accuracies (mean ± standard deviation in %) for the external AIBL data set

Exclusion method Number of training subjects excluded

(base model) 0 50 100 150 200 250

Random (-) 60.00±5.00 55.00±3.98 57.50±4.06 55.71±2.37 52.14±5.35 51.07±4.80

LOO (LR) 60.00±5.00 58.93±3.29 61.79±4.53 63.21±3.93 58.21±3.93 59.64±4.80

LOO (RF) 60.00±5.00 59.64±5.99 61.43±5.71 61.79±2.79 61.07±4.64 56.07±4.53

Data Shapley (LR) 60.00±5.00 61.07±3.73 61.43±3.85 62.14±3.98 63.21±5.31 61.07±1.92

Data Shapley (RF) 60.00±5.00 64.64±5.64 62.86±2.86 62.86±1.75 61.79±2.29 58.57±2.37

Different methods were used to identify and focus on the training subjects with the most informative data. Ten repetitions with different seeds were performed for every
exclusion data set. The best results are highlighted in bold

validation data set. However, the maximum exclusion cut-
off for the test set was not validated for an independent
test set and is thus an optimistic estimation.

Evaluation
Figure 14, Tables 9 and 10 summarize the mean XGBoost
accuracies dependent on the data valuation strategies and
the number of subjects excluded from the training set for
the independent ADNI test set. The no information rate
for the ADNI test set was 55.56%. The mean accuracy
of the base model was 62.01% which was slightly better
than the results achieved for the RF models presented
in Fig. 8. For both base models, the mean accuracies
increased if training subjects with small Data Shapley val-
ues were excluded. The LR Data Shapley method showed
increased accuracies until the maximum of 68.47% was
reached by excluding 144 subjects. After this maximum,
the classification accuracies decreased. After approxi-
mately 325 training subjects were excluded, the model
achieved results worse than the random exclusionmethod
and worse than the no information rate after approxi-
mately 375 subjects were excluded. The validation cutoff
value was 248 for this method, and the associated model
reached an accuracy of 65.07%.
The best mean accuracy for the RF Data Shapley

method was 68.47%, reached by excluding 178 training
subjects. This model reached an F1-score of 73.48%. The
validation cutoff was 133, and the models trained with

this cutoff value reached a mean accuracy of 65.90%. This
value was 3.75% (2.57 percentage points) worse than the
best model but 6.27% (3.89 percentage points) better than
the base model.

External validation
Figure 15 plots the number of excluded training subjects
dependent on the mean accuracies achieved for the exter-
nal AIBL data set. Tables 11 and 12 summarize those
results. The no information rate for the AIBL data set
was 57.14%, and the base model reached a mean accu-
racy of 60.00%, which was slightly worse than the results
achieved for RF models presented in Fig. 9. The RF Data
Shapley method showed some improvements in the clas-
sification results. The best accuracy of this model was
66.43% achieved by excluding 195 subjects. The validation
cutoff of this strategy was 133, and the associated models
reached a mean classification accuracy of 61.79%, which
was 2.98% (1.79 percentage points) better than the base
model.
The course of the LR Data Shapley method was more

conspicuous, as the accuracies slightly increased until
approximately 75 subjects were excluded from the train-
ing set. After this cutoff value, the method shows a rather
constant course until approximately 300 training subjects
were excluded. After this threshold, the accuracies of this
method increased until a peak of 75.36% was reached by
excluding 396 subjects and thus 84.80% of the training

Table 12 Mean XGBoost accuracies and F1-scores (in %) for the AIBL data set (no information rate 57.14%)

Exclusion method Zero-cutoff Max valid Max test

n ACC (in %) F1 (in %) n ACC (in %) F1 (in %) n ACC (in %) F1 (in %)

Random (-) – – – 430 55.00 57.97 444 67.50 73.44

LOO (LR) 84 59.64 66.21 69 63.21 70.00 422 68.21 73.68

LOO (RF) 49 57.14 64.69 11 61.07 68.43 97 66.43 73.53

Data Shapley (LR) 152 63.21 69.97 248 58.57 66.66 396 75.36 77.53

Data Shapley (RF) 164 62.14 71.65 133 61.79 70.84 195 66.43 75.34

Different methods were used to identify and focus on the training subjects with the most informative data. The zero-cutoff method excluded all training subjects with Data
Shapley values smaller than zero. Max valid was the threshold achieved by maximizing the results for the independent validation set. Max test was the optimistic threshold
which achieved the best results for the test set. Ten repetitions with different seeds were performed for every exclusion data set. The best results are highlighted in bold
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set. However, the small number of subjects included in
these models increased the risk of a selection bias. The
validation cutoff value of this method was 248, and the
associated model reached a mean accuracy of 58.57%,
which was 2.38% (1.43 percentage points) worse than the
base model.

Interpretationmodel
Figure 16 shows the SHAP summary plot for an XGBoost
base model. Themost important feature in this model was
the LDELTOTAL cognitive test score. The model learned
those poor test performances were associated with dis-
ease progression, whereas good test performances had a
protective effect. The second most important feature in
this plot was the volume of the left cuneus. Strikingly,
high volumes of the left cuneus were associated with AD
conversion. As this model partly associated high brain vol-
umes with disease progression, some associations were
not biologically plausible [61, 65–67]. These features were
the volumes of the left cuneus, the left pallidum, the left
insula, and the left fusiform gyrus.
Figure 17 shows the SHAP summary plot for an

XGBoost model trained on the entire training set, except
for those 248 subjects with the smallest LR Data Shapley
values. The cutoff value of 248 was the validation cutoff

value for the LR Data Shapley method. Consistently with
the previously described base model, the most important
feature in this model was the LDELTOTAL cognitive test
score. The model learned that poor test performances
were associated with disease progression, whereas high
LDELTOTAL cognitive test scores were associated with a
stable MCI diagnosis. The second most important feature
was the left cuneus volume. For this feature, the model
learned an association that was not biologically plausible.
The same was observed for the right thalamus proper vol-
ume, which was the third most important feature in this
plot. However, the number of features with an implausi-
ble association was decreased in comparison to the base
model. It can be also observed that the number of ApoEε4
alleles was more relevant in the model with the reduced
data set. Overall, the SHAP summary plots mainly showed
less complex ML models for the reduced training sets.

Discussion
In this research, an ML workflow was developed to dis-
tinguish between sMCI and pMCI subjects. Data used
in the experiments included non-invasive MRI, cognitive
test scores, and demographic data from two AD cohorts.
Data Shapley values were used to avoid overfitting of the
ML models and thus focus on the most important AD

Fig. 16 SHAP summary plot for the XGBoost model. No training subjects were excluded. SHAP summary plots aggregate the explanation of
individual predictions of the entire training and test set. Each point visualizes a Shapley value for a subject and a feature. The color of the points
depends on the feature values, and the horizontal axis shows the calculated Shapley values. The vertical axis represents both the features, ordered
by the mean absolute Shapley values and their distribution. The positive class is pMCI
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Fig. 17 SHAP summary plot for the XGBoost model. 248 training subjects with the smallest LR Data Shapley values were excluded. SHAP summary
plots aggregate the explanation of individual predictions of the entire training and test set. Each point visualizes a Shapley value for a subject and a
feature. The color of the points depends on the feature values, and the horizontal axis shows the calculated Shapley values. The vertical axis
represents both the features, ordered by the mean absolute Shapley values and their distribution. The positive class is pMCI

patterns. Data Shapley values were successfully applied
to other medical contexts, such as in pneumonia detec-
tion [37] in the Chest X-Ray data set [38]. Therefore,
in this research, Data Shapley values were applied to
AD data sets. The experiments performed in this article
showed slightly improved classification results achieved
when excluding training subjects using TMC Data Shap-
ley in comparison to the random exclusion and the LOO
methods. The results of the RF Data Shapley exclusion
showed slightly better results for the independent ADNI
test set. RF and XGBoost classifiers were used for the final
classification of sMCI and pMCI subjects, and both mod-
els showed similar classification performances. However,
the XGBoost models showed better improvements using
Data Shapley.
For all experiments, except for the RF models and the

AIBL test set, the Data Shapley outperformed all the other
methods comparing the results of the validation cutoffs.
For the cutoff values which were determined for the test
set, the Data Shapley method also outperformed the LOO
and random exclusion methods. However, those results
were not tested for an independent test set and thus might
be an optimistic estimation.
The models trained exclusively on subjects with positive

Data Shapley values (zero-cutoff models) often reached
promising classification results.

The used feature selection method selected features,
which were previously associated with AD progression.
The associations between the Data Shapley values and

the model features were investigated using SHAP sum-
mary plots within the diagnostic groups. Complex rela-
tions were observed between the Data Shapley values and
the features. The most important features to predict the
LRData Shapley values in the sMCI diagnostic group were
the number of ApoEε4 alleles and the left inferior parietal
lobule. The most important features in the pMCI group
were the volume of the right thalamus proper and the
LDELTOTAL cognitive test score. The most important
features to predict the RF Data Shapley values in the sMCI
group were the LDELTOTAL cognitive test score and the
volume of the left amygdala. The LDELTOTAL cognitive
test score and the volume of the left supramarginal gyrus
were the most important features to predict the RF Data
Shapley values in the pMCI group. Most of the associ-
ations noted, were biologically plausible, as small brain
volumes, bad cognitive test performance and presence of
ApoEε4 alleles were more representative for pMCI sub-
jects. It is important to note that the Data Shapley method
increased the risk of a selection bias for themodels trained
on reduced data sets.
Previous studies in AD detection especially those, which

used deep learning models, suffered from data leakage
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[7]. The proposed ML workflow was carefully validated
for two independent data sets. First, the model selection
was performed using an independent validation set. The
final models were validated using an independent ADNI
test set, which included no training or validation subjects.
Additionally, an external data set from the AIBL cohort
was used to validate the results.
Many other ML models for AD detection were trained

and validated for a single data set [75] and thus lacked
for external validation. External validation is important
in ML [76] because most AD cohorts differed regarding
study locations, study size, recruitment criteria, diagnosis
method, and biomarkers. [77–80].
The experiments presented in this research showed

the generalizability of the ML models for the AIBL
data set. The Data Shapley valuation strategy showed
small improvements for both base models. However, the
AIBL accuracies achieved for the validation cutoff values
often achieved results similar to the base models.
Another disadvantage of AD detection models was the

poor reproducibility [75] of the results. Although most
of the ML models for early AD detection were trained
on the ADNI data set [75], they use different subject
selections to train and validate their models. Some bench-
mark challenges, for example, The Alzheimer’s Disease
Prediction Of Longitudinal Evolution (TADPOLE) [81],
and the Computer-Aided Diagnosis of Dementia (CAD-
Dementia) [82] challenge, provided fixed data sets. How-
ever, this leads to less flexibility and no consideration
of new observations. A framework, which includes stan-
dardized pipelines for subject selection, preprocessing,
feature extraction, classification algorithms, and cross-
validation, was developed in Samper-Gonzáles et al. [75].
Data leakage problems additionally hindered the compa-
rability between ML models in AD detection [7].
In this article, reproducibility was addressed, provid-

ing a precise description of the data set and the inclusion
and exclusion criteria. At the time of publication, a soft-
ware tool that enables the generation and description of
reproducible AD data sets will be published.
Many articles trained black-box models for AD detec-

tion without providing a model interpretation. The inter-
pretation of ML models is important in healthcare [83] to
trust complex models.
There have been already some articles proposing inter-

pretation methods for black-box models in AD detec-
tion. Most of those articles showed promising results
[39, 79, 84].
Here, Kernel SHAP values were used to interpret black-

box models. In this context, SHAP summary plots were
used to examine if the trained models show biologically
plausible relations. In the experiments, only a few implau-
sible relationships were identified. Models which were

trained on reduced data sets, showed biologically plausi-
ble associations. However, the influence of the number of
ApoEε4 alleles and the LDELTOTAL cognitive test score
was much more present in those models. The models
trained on the reduced data sets showed a decreased num-
ber of biologically implausible associations. These results
support the assumption that Data Shapley valuation can
help to avoid model overfitting but might also facilitate
a selection bias. Thus, future work will address this issue
using larger data sets. SHAP force plots were used to inter-
pret individual diagnoses. The explanation of individual
model decisions and the associated possibility to model
the influence of single feature expressions make Shapley
values more valuable in comparison to classical feature
importance measurements.

Limitations
The approach proposed in this article had several lim-
itations. First, the Data Shapley method increased the
possibility of a selection bias, which leads to more specific
and less generalizable models and thus reduced the prob-
lem to a specific subgroup. For this reason, it is important
to reproduce the results described in this paper on a larger
AD data set. Thus, the validation set used to calculate Data
Shapley values would include more diverse MCI subtypes.
The small number of subjects in this research results from
the small number of MCI subjects with a longitudinal
diagnosis available in the ADNI cohort. Additionally, the
AIBL data set focuses on CN subjects, and thus the exter-
nal validation set included only 28 subjects. Future inves-
tigations should thus include more AD data sets, knowing
that those cohorts differ in their inclusion criteria. The
AD subset [85] of the Heinz Nixdorf Risk Factors Eval-
uation of Coronary Calcification and Lifestyle (RECALL)
(HNR) [86], the Open Access Series of Imaging Stud-
ies (OASIS) [87], or a subset of the National Alzheimer’s
Coordinating Center (NACC) [88] can be used as supple-
mentary cohorts. Another fact that lead to a small number
of training samples is that the LOO and Data Shapley val-
uation strategies need an independent validation data set.
Future work will use bootstrapping as a wrapper function
to overcome this limitation.
Due to the consistent availability in the examined data

sets, only MRI, demographics, the number of ApoEε4
allele, and cognitive test data are included in our inves-
tigations. However, PET scans and biomarkers have high
medical relevance and should thus be considered in future
investigations.
The results of the experiments included both maximum

exclusion cutoffs for the validation set and the test set.
However, it should be noted that the exclusion cutoffs
for the test data set performed optimistic estimations not
validated with an additionally independent validation set.
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Another limitation was that no hyperparameter-tuning
was performed within the workflow. It was expected that
adding this process would increase the computational
effort of the workflow and impede the interpretation of
the results. It would also require another independent val-
idation set, which would not be feasible as the data is
already sparse.
In this work, only classifiers, based on decision trees,

were used to distinguish between sMCI and pMCI sub-
jects. Although only decision tree-based classifiers were
used, a model-agnostic interpretation method was chosen
to simplify the extension to other ML models. It is inter-
esting to investigate the presented method for other ML
models. In particular, deep learning models like CNNs,
which were can automatically extract locally textural fea-
tures from MRI scans, were often used to improve classi-
cal ML methods. However, there is no consensus if those
methods can improve AD detection. Most of the previous
work in this area suffered from data leakage [7] or investi-
gated the less challenging discrimination between AD and
CN.

Conclusion
This work proposed an ML workflow to identify whether
MCI subjects will prospectively convert to AD. Differenti-
ation of these is important to recruit and monitor subjects
for therapy studies. The data used in this approach were
non-invasive and included MRI scans, demographic data,
the number of ApoEε4 alleles, and cognitive test results.
Volumetric features were extracted from the MRI scans
using the FreeSurfer pipeline. Data used in the experi-
ments were received from two cohorts: ADNI and AIBL.
All models were trained on a training set of the ADNI
cohort and validated for two independent test sets and
additionally by an independent validation set. On the one
hand, an independent test set of the ADNI cohort and
a subject selection from the AIBL cohort. In particular,
it was examined whether Data Shapley values were able
to identify the subjects with the most informative data
and thus improve the classification results of the trained
models. Data Shapley values were computed for the inde-
pendent validation set. RF and XGBoost models were
trained and interpreted using Kernel SHAP.
The results of the experiments showed improvements

for the independent test set through the used TMC
Data Shapley method. The SHAP summary plots mainly

showed biologically plausible associations for both RF and
XGBoost models. Less complex models, focusing on the
ApoEε4 alleles and cognitive test results, were learned
if training subjects with small Data Shapley values were
excluded. The results for the independent AIBL data set
showed reproducible results.

Appendix
Shapley values
Shapley values [36] are affiliated with coalition game the-
ory. The aim is to fairly determine the effect of every
single player on the overall team result. It is assumed that
n players play a cooperative game. The outcome of the
game is referred to as V (D), where D = {1, ..., n} denotes
the aggregated set of players. � is the contributed value
of each player to the outcome of the game. An intuitive
method is the LOO method, in which the game is first
played with all players, and then with the entire set of play-
ers but without the player at interest i. It can be seen in
Eq. 8 that the value of each player is the difference between
the game result with the entire data set minus the game
result without the player at interest.

�i = V (D) − V (D \ {i}) (8)

To fairly distribute the values of all players, the sum of
all individual values �i is required to correspond to the
overall result of the team, which can be seen in Eq. 9. The
LOO method does not meet this criterion.

V (D) =
n∑

i=1
�i (9)

The Shapley values offer an alternative approach, which
fulfills this criterion. To fairly distribute the values of the
players, each Shapley value considers all subsets S of play-
ers. The weighted sum of the individual performances in
the subsets then gives the player’s overall individual per-
formance. Shapley values are thus defined according to
Eq. 10.

�i =
∑

S⊆D\{i}

V
(
S ∪ {i}) − V (S)

(
n − 1
|S|

) (10)

Hyperparameters of implementation

Table 13 Parameters used for the implementation of the ML workflow

Method Hyperparameter Values

RF n_estimators 50

criterion “gini”

max_depth None
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Table 13 Parameters used for the implementation of the ML workflow (Continued)

Method Hyperparameter Values

min_weight_fraction_leaf 0.0

max_features “auto”

max_leaf_nodes None

min_impurity_decrease 0.0

min_impurity_split None

bootstrap True

oob_score False

class_weight None

ccp_alpha 0.0

max_samples None

XGBoost subsample 0.6

objective “binary:logistic”

booster “gbtree”

eta 0.3

gamma 0

max_depth 6

min_child_weight 1

max_delta_step 0

sampling_method “uniform”

colsample_bytree 1

colsample_bylevel 1

colsample_bynode 1

lambda 1

alpha 0

tree_method “auto”

sketch_eps 0.03

scale_pos_weight 1

updater “grow_colmaker,prune”

refresh_leaf 1

process_type “default”

grow_policy “depthwise”

max_leaves 0

max_bin 256

predictor “auto”

num_parallel_tree 1

LR solver “liblinear”

penalty “l2”

dual False

tol 1e-4

C 1.0

fit_intercept True

intercept_scaling 1

class_weight None
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Table 13 Parameters used for the implementation of the ML workflow (Continued)

Method Hyperparameter Values

max_iter 5000

multi_class “auto”

warm_start False

l1_ratio None

Data Shapley number of repetitions 4

model_family {“RandomForest”, “logistic”}

metric “accuracy”

num_test 108

problem “classification”

sample weights None

save_every 100

err 0.1

tolerance 0.01

g_run False

loo_run True

Kernel SHAP nsample 3000

l1_reg “auto”

link “identity”
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